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Abstract We show through a simple example that perturbations of the Hamiltonian of a
spin glass which cannot be detected at the level of the free energy can completely alter the
behavior of the overlap. In particular, perturbations of order O(logN), with N → ∞ the
size of the system, suffice to have ultrametricity emerge in the thermodynamical limit.

Keywords Mean field spin glasses · Extreme value theory · Parisi theory · Ultrametricity

1 Introduction

By virtue of the seminal works of Guerra [15] and Talagrand [20], the limiting free en-
ergy of models of Sherrington-Kirkpatrick(SK)-type is now known to be given by the Parisi
Formula. However, the purported ultrametric organization of the Gibbs states [17] remains
poorly understood.

One piece of evidence for ultrametricity in the SK-type models is obtained through the
cavity-dynamics framework of Aizenman, Sims and Starr [2]: one easily checks that the
Parisi Formula is obtained when the AS2-functional is evaluated in the Derrida-Ruelle Ran-
dom Overlap Structures (the ROSt’s), [19]. As these are prototypes of ultrametric structures,
the ultrametricity seems very plausible. This however clearly does not imply that the Gibbs
measure itself is ultrametric. In [6] it is proved that there do exist models whose free energy
coincides with that of a hierarchical model but with non-ultrametric Gibbs measure (such
models were called non-irreducible).
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Another piece of evidence in favor of ultrametricity stems from the extended Ghirlanda-
Guerra identities (EGGI), especially in view of Panchenko’s beautiful result [16]. There are
however different problems with the EGGI in relation to ultrametricity. First, it is not known
whether the EGGI hold for any temperature, but only “on average”, cf. [14, 20]. Regard-
ing this difficult issue, we have nothing to say. Second, the EGGI are typically obtained by
adding small perturbations to the Hamiltonian which leave the free energy of the system
unchanged. The fact that this is a somewhat risky endeavour was already clear to Parisi and
Talagrand (and presumably to others) who point out in [18, p. 3] that

“. . .to any Hamiltonian one can add a small perturbation term. . . such that the perturbed
Hamiltonian satisfies the EGGI. The perturbation term is small in the sense that it does not
change the limiting free energy. (Unfortunately, adding this term might change the structure
of the overlap.)”

In this note we address the issue of perturbed Hamiltonians with particular emphasis
on ultrametricity. We consider REM-like systems such as those introduced in [6] which
are not ultrametric in the thermodynamical limit and show that “small” perturbations to
the Hamiltonian suffice to have ultrametricity emerge; by this we understand perturbations
whose variance is of order α logN , for α large enough and N the size of the system.

The use of small perturbations pervades the whole subject of spin glasses, having
proved to be crucial in the derivation, e.g., of the Aizenman-Contucci equations [1], of
the Ghirlanda-Guerra equations [14] and their generalizations EGGI [20]. Usually based on
sound stability considerations [12], small perturbations must however be taken with caution.
Indeed, although it is to be expected from general statistical mechanics considerations that
the structure of the Gibbs state can be affected by a small perturbation of the Hamiltonian, it
is rather surprising that modifications of the order of the logarithm of the size of the system
suffice to deeply alter the organization of the states.1

2 General Setting

Let us start by considering a general Gaussian spin glass system on N spins. Precisely,
we take a centered Gaussian process X = (Xσ )σ∈�N

, �N := {−1,1}N , with covariance or
overlap matrix Q = N{qσσ ′ } and qσσ = 1. At this point, we do not specify a form for the
overlap matrix Q besides the normalization of the diagonal (and hence no particular geom-
etry of �N ). In our notation, the SK model corresponds to taking qσσ ′ = ( 1

N

∑N

i=1 σiσ
′
i )

2.
Throughout the paper we will write E for the expectation over the process X and P for its
law.

The Gibbs measure Gβ,N on �N is defined as usual by

Gβ,N (σ ) = eβXσ

ZN(β)
, ZN(β) =

∑

σ∈�N

eβXσ .

We write G⊗s
β,N for the product measure of s copies of Gβ,N . The free energy is denoted by

fN(β)
def= 1

N
logZN(β).

1This is to be compared for example to the random field Curie-Weiss model where perturbation of order N1/2

are necessary to modify the measure [3].
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We will assume that the limit N → ∞ exists, and that it coincides with the limit of EfN(β)

(self-averaging).
It is useful for our purpose to make sense of the Gibbs measure in the thermodynamic

limit N → ∞ (see [4] for details). To this aim, one considers the algebra of observables
generated by functional of the form

Gβ,N �→ EG⊗s
β,N

⎛

⎝
s∏

i<j

q
kij
σiσj

⎞

⎠ (1)

for some kij ∈ N. Replicas of configurations are denoted by σi . For each N , the collection
of observables define the law of a weakly exchangeable overlap matrix Qβ,N , i.e., a random
matrix whose law is invariant under permutations of rows and columns.

Weakly exchangeable overlap matrices correspond to Gram matrices constructed by in-
dependently sampling vectors from a directing measure μ on some canonical Hilbert space
H [13]. In the above example, the directing measure of Qβ,N is the Gibbs measure Gβ,N and
the inner product is simply the overlap between configurations. By compactness, one can
find a subsequence for which the whole collection of observables converge. Each limiting
measure defines a weakly exchangeable covariance matrix, and hence a limiting directing
measure, that we refer to as the infinite-volume Gibbs measure and denote it by Gβ . We stress
that this limit will generally not be unique. The whole set of Gibbs measure of the system is
defined to be the closed convex hull of such limit points. By analogy with the finite-volume
measure, the pure states at given disorder in this framework correspond to the vectors on
which a realization of Gβ is supported. We gather these considerations into a proposition.

Proposition 2.1 Let Qβ,N be the overlap matrix constructed by the sampling of the Gibbs
measure Gβ,N . Then each limit point of (Qβ,N)N defines an infinite-volume Gibbs random
measure Gβ on a canonical Hilbert space H.

We will denote a generic element of H by σ and the inner product on H by qσσ ′ to be
consistent with the notation of finite systems. We will write d for the distance on H induced
by the inner product

d(σ,σ ′) = √
1 − qσ,σ ′ .

A tantalizing question related to the Gaussian process is to describe the limiting Gβ . For
many systems, the organization of the pure states is expected to obey the appealing Parisi
Picture.

Definition 2.2 (Parisi picture) A spin glass system is said to satisfy the partial Parisi Picture
if the distance on the support of Gβ is ultrametric almost surely, i.e.,

G⊗3
β (d(σ1, σ2) ≤ max{d(σ1, σ3), d(σ2, σ3)}) = 1.

It is said to satisfy the full Parisi picture if the law of Gβ is a Derrida-Ruelle cascade.

The Derrida-Ruelle cascades will be defined below. A first step towards the Parisi picture
that can be proven in many examples, and under which the partial picture implies the full
one, is the celebrated extended Ghirlanda-Guerra identities
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Definition 2.3 (EGGI) A Gibbs measure Gβ is said to satisfy the extended Ghirlanda-
Guerra identities if and only if for all s ∈ N and for any bounded measurable function
f : [−1,1]s2 → R and g : [−1,1] → R

EG⊗s+1
β

(
f ({qσiσj

}i,j≤s)g(qσ1σs+1)
)

= 1

s
EG⊗s

β

(
f ({qσiσj

}i,j≤s)
)
EG⊗2

β (qσ1σ2) + 1

s

s∑

l=2

Eμ⊗s
(
f ({qσiσj

}i,j≤s)g(qσ1σl
)
)
. (2)

We remark that the identities are non-linear in the law of Gβ , because of the product appear-
ing on the right-hand side. Therefore the identities cannot hold for convex combination of
Gibbs measures, but only for extreme ones. It is well established that EGGI is a necessary
condition for the full Parisi picture to hold [10]. This leads to the natural question, is EGGI
a sufficient condition for ultrametricity? A recent and beautiful result of Panchenko shows
that it actually is, provided the overlaps can only take a finite number of values.

Theorem 2.4 (Panchenko) If a measure G satisfies EGGI and the number of values taken
by the non-diagonal entries is finite, then almost surely

G⊗3
(
d(σi, σj ) ≤ max{d(σi, σk), d(σj , σk)}

)
= 1.

Panchenko’s theorem thus establishes EGGI as a non-trivial yet simple criteria for a spin
glass system to satisfy the Parisi picture. A large class of spin glass models, the so-called
stochastically stable ones, [1, 12] satisfy the Ghirlanda-Guerra identities when g(q) = q

for almost all value of β . The extended identities are much stronger, since valid for all
bounded g, and proven in the case of REM-like models [10]. For more involved models,
like in the SK-type model, and as [14], one can retrieve EGGI by constructing a perturbed
Hamiltonian Xδ by adding to the original system independent Gaussian fields (Xp

σ ) with
covariance NδN {qp

σσ ′ } for integer p > 1 where δN → 0. The perturbation is chosen in such a
way that: (i) The free energy of the perturbed system is the same as the original one: f δ = f ;
(ii) The standard procedure to prove the identities can be applied for each p. The extended
identities then hold for all bounded measurable g(q) by approximation.

The question we address in this paper is motivated by the use of EGGI as a tool to
investigate the ultrametricity of the limiting Gibbs measure of the original system:

If X and Xδ are two spin glasses with the same free energy, does Gδ
β being ultrametric

implies so for Gβ?

In the next section, we provide an example of a simple system for which the answer is no,
cf. Theorem 3.4 and Corollary 3.5. This in effect also shows that the Gibbs measure is not
continuous with respect to the perturbation, cf. Corollary 3.6. The procedure we choose will
be different from an expansion in p-powers of the covariance matrix though equivalent, and
ad hoc to our example. This has the advantage of being valid at all temperature as well as
providing more insights and better control on the effect of the perturbation. The proofs are
postponed to Sect. 4. For completeness, the method of p-power expansion is outlined in an
Appendix.
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3 Perturbations of Non-Irreducible Spin Glasses

3.1 Definition of the Example

In [6] some nonhierarchical versions of Derrida’s GREM were introduced. It was proved
that the free energy always coincides in the thermodynamical limit with the free energy of a
suitably constructed GREM. On the other hand it was shown in [7] that not all the systems
of the form [6] are genuinely ultrametric. Such models were called non-irreducible. We are
going to consider here the simplest non-irreducible Hamiltonian.

Let N ∈ N, and consider σ = (σ1, σ2) ∈ �N where σ1, σ2 ∈ �N/2. We define the Hamil-
tonian

Xσ
def= X(1)

σ1
+ X(2)

σ2
, (3)

where (X(1)
σ1

), σ1 ∈ �N/2, are iid centered Gaussians of variance Na1 and so is (X(2)
σ2

), σ2 ∈
�N/2, with variance Na2 and independent of X(1). Here a1, a2 are positive parameters such
that a1 + a2 = 1, and, without loss of generality we assume that a1 > a2.

By definition, the overlap qστ between two distinct configurations σ and τ can only take
the values 1 if σ1 = τ1, σ2 = τ2, a1 if σ1 = τ1, a2 if σ2 = τ2 and 0 if neither projection of σ

corresponds. The reader can verify easily that the distance induced by the overlaps is not an
ultrametric.

The limiting free energy fN(β)
def= limN→∞ fN(β) of the spin glass (3) exists, is self-

averaging and coincides with that of a two-levels GREM [6]. (Our choice a1 > a2 prevents
the system from collapsing to a REM.) The Gibbs measure is however clearly a product
measure and will remain so in the limit, Gβ,N (σ ) = G(1)

β,N ⊗ G(2)
β,N , with G(1)

β,N and G(2)
β,N denoting

the first and second marginal respectively. Hence, by the structure of the overlaps, such a
measure cannot exhibit ultrametricity (unless the trivial one).

Lemma 3.1 The support of the limiting Gibbs measure Gβ of the system (3) is not ultramet-
ric. In particular, it does not satisfy EGGI.

Proof The second assertion can be checked directly. It is also a straightforward application
of Panchenko’s theorem. �

3.2 The Perturbed Hamiltonian

We now introduce a small perturbation of (3). For a parameter δ > 0 which will measure
the “strength” of the perturbation, we consider an additional family of independent centered
Gaussians (Xδ

σ1,σ2
) with variance Na2δ ω(N), where as N → ∞,

ω(N) → 0, Nω(N) → ∞.

Assumption 3.2 Nω(N) tends to +∞ at least as fast as α logN for α > 2
log 2 .

(It will turn out that this speed is, as long as the extremal process is concerned, optimal, in
the sense that smaller perturbations leave the asymptotical properties of the extremal process
unchanged, cfr. Remark 4.3 below.)

We set the perturbed Hamiltonian to be

Xδ
σ

def= X(1)
σ1

+ X(2)
σ2

+ Xδ
σ1,σ2

. (4)
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We define partition function Zδ,N(β), free energy fδ,N (β) and Gibbs measure Gβ,δ,N in the
obvious manner.

The following shows that such a perturbation is indeed small:

Lemma 3.3 The limit fδ(β)
def= limN→∞ fδ,N (β) exists and is self-averaging. Moreover, for

any δ > 0,

fδ(β) = f (β).

Proof Denoting by Eδ integration with respect to the Xδ
σ1,σ2

-field, it follows by Jensen’s
inequality that

Efδ,N (β) ≤ E
1

N
log

∑

σ∈�N

Eδ

[
exp

[
βXσ + βXδ

σ1,σ2

] ]
= EfN(β) + β2

2
a2δω(N).

Taking the limit N → ∞ gives the upper bound (in expectation). On the other hand, we may
rewrite

Efδ,N (β) = E log Gβ,N

(
expβXδ

σ

)
+ EfN(β)

≥ EGβ,N

(
βXδ

σ1,σ2

)
+ EfN(β) = EfN(β),

where the inequality follows again by Jensen. This yields the lower bound (in expectation).
The self-averaging follows by concentration of measure, see e.g. Theorem 2.2.4 in [20],
once it is observed that fδ,N (β) has Lipshitz constant smaller than

βN−1/2
√

a1 + a2(1 + o(1)). �

3.3 Gibbs Measure of the Perturbed Hamiltonian

In order to describe the properties of the Gibbs measure associated to the perturbed Hamil-
tonian, we need to recall some objects, related to the Derrida-Ruelle cascades.

Consider the point process (ξi, i ∈ N
2), with ξi

def= ξ 1
i1

+ ξ 2
i1,i2

, with the following prop-

erties: 1. (ξ 1
i1

, i1 ∈ N) a Poisson Point Process of density β1e
−β1t dt , with β1

def=
√

log 2
a1

. 2.

For given i1 the Point Process (ξ 2
i1,i2

, i2 ∈ N) is Poissonian with density β2e
−β2t dt , with

β2
def=

√
log 2
a2

. 3. For different i1, i
′
1, the point processes (ξ 2

i1,j , j) and (ξ 2
i′1,j

, j) are indepen-

dent. (Remark that, in virtue of our choice a1 > a2, it holds β1 < β2 strictly: this will become
important.)

We construct a marked point process (mPP for short) on R
2 × {0, a1} by setting

XDR
def=

∑

i 
=i′
δξi ,ξi′ ,qii′ ,

where the overlap qii′ of two multi-indices i, i ′ is defined as 0 if i1 
= i ′
1 and a1 otherwise.

Note that by construction the overlaps of X define an ultrametric.
In the limit N → ∞, it is convenient to look at the shifted energy levels (Xδ

σ − aN) for

aN
def= a

(1)
N + a

(2)
N (δ)



Small Perturbations of a Spin Glass System 1173

a
(1)
N

def= N
√

a1 log 2 − a1

2
√

a1 log 2
log(2πa1N),

a
(2)
N (δ)

def= N
√

a2(1 + δN) log 2 − a2(1 + δN)

2
√

a2(1 + δN) log 2
log(2πNa2(1 + δN)).

where we write δN = δωN for short.
The following shows that such a small perturbation can turn a non-ultrametric system

such as (3) into an ultrametric one. We formulate the result first for the extremal process.

Theorem 3.4 Under Assumption 3.2, and for any δ > 0 the mPP of the shifted energy levels

X δ
N

def=
∑

δXδ
σ −aN ,Xδ

τ −aN ,q(σ,τ )

converges weakly to XDR .

To relate this result to the Parisi picture, we need to recall the multiplicative Derrida-Ruelle
cascades. By these we understand the image of X under the mapping s �→ exp(βs), where

β > β2. This is simply the above marked point process with points ξi replaced by ηi
def=

exp(βξi), that is

Y def=
∑

i 
=i′
δηi ,ηi′ ,qii′ .

We observe that β > β2 insures that
∑

ηi < ∞ almost surely. By Z we understand the
normalized Derrida-Ruelle multiplicative cascades, namely the above Point Process where

the points ηi are replaced by their normalized counterparts ηi
def= ηi/

∑
j ηj .

The normalized cascade is nicely expressed in terms the Bolthausen-Sznitman coales-
cent, introduced in [8]. This is a continuous time Markov process (ψt , t ≥ 0) taking values
in the compact set of partitions on N. We call a partition C finer than D, in notation C � D,
provided that the sets of D are unions of the sets of C . The process (ψt , t ≥ 0) has the fol-
lowing properties: (i) If t ≥ s then ψs � ψt . (ii) The law of (ψt , t ≥ 0) is invariant under
permutations involving only a finite number of elements. (iii) ψ0 = {{1}, {2}, . . .}. We de-
note the equivalence relation associated with ψt by ∼t . To every pair of point corresponds a
stopping time t (i, j) := min{l : i ∼t j}.

For xl := βl/β , l = 1,2, we pick t0 = 0 < t1 < t2 < ∞ with tl = log(x2/x2−l ). The over-
lap qij is defined to be 0 if t (i, j) > t2, a1 if t2 > t(i, j) > t1 and 1 otherwise. Given a
Poisson Point Process (zi, i ∈ N), one can construct a marked point process [7]

∑

i 
=i′
δzi ,zi′ ,qii′

where the marks qii′ are chosen randomly as above, independently of the point process
(zi, i ∈ N). The law of such an object is denoted by P � C , where P is the law of the
underlying point process, and C that of the coalescent. A normalized cascade can be shown
to have the law Px � C where Px is the law of the normalization of the Poisson point process
with density xt−x−1dt on R+ [8].
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Corollary 3.5 (Full Parisi picture) Let β > β2. Then the marked point process of the Gibbs
measure associated to the perturbed Hamiltonian

∑

σ 
=τ

δGβ,δ,N (σ ),Gβ,δ,N (τ),q(σ,τ )

converges weakly towards Px2 � C , where Px2 is the law of the normalization of the Poisson
point process with density x2t

−x2−1dt on R+.

A direct consequence of the above is that the EGGI hold for the perturbed Hamiltonian,
thereby proving the discontinuity of the Gibbs state under the perturbation.

Corollary 3.6 (Perturbed Hamiltonian and EGGI) The limiting Gibbs measure of the per-
turbed system Gβ,δ satisfies EGGI. In particular, in the sense of the topology induced by the
functions (1),

lim
δ→0

Gβ,δ 
= Gβ

where Gβ is the limiting Gibbs measure of the original system (3).

Proof By Corollary 3.5, limδ→0 Gβ,δ is a Derrida-Ruelle cascade. They are well-known to
satisfy EGGI, cfr. Bovier and Kurkova’s work [11]. By Lemma 3.1, Gβ does not. The con-
clusion follows from the fact that the identities are continuous in the topology determined
by the observables (1). �

4 Proofs

The proofs of Theorem 3.4 and of Corollary 3.5 very closely follow the line of proof of the
Main Theorem in [7]. To keep this work reasonably self-contained we shall however outline
the crucial steps, especially those steps which differ from the analysis in [7]. (It turns out
that these differences are only very small.)

Throughout, K will denote a constant, not necessarily the same at different occurrences.

We shorten the notation for the shifted processes X̂1
σ1

def= X1
σ1

−a
(1)
N , X̂2

σ2

def= X2
σ2

−a
(2)
N (δ) and

X̂δ
σ

def= X̂1
σ1

+ X̂2
σ2

+ Xδ
σ1,σ2

. We will need the following straightforward asymptotics

a
(1)
N

a1N
= β1 + O

(
logN

N

)

,

exp

[

− a
(1)
N

2

2a1N

]

= 2−N/2β1

√
2πa1N(1 + o(1)).

(5)
a

(2)
N (δ)

a2N(1 + δN)
= β2(1 + O(δN)),

exp

[

− a
(2)
N

2
(δ)

2a2(1 + δN)N

]

= 2−N/2β2

√
2πa2(1 + δN)N(1 + o(1)).
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Lemma 4.1 Let M be a compact set. For given ε > 0 there exists large enough compact M̃

such that

P

[
∃σ ∈ �N, such that X̂δ

σ ∈ M, but X̂1
σ1

/∈ M̃ or X̂(2)
σ2

+ Xδ
σ1,σ2

/∈ M̃
]

≤ ε

for large enough N .

Proof We first claim that to ε > 0 there exists C > 0 such that

P

[
∃σ1 ∈ σN/2 : X̂1

σ1
≥ C

]
≤ ε. (6)

This is straightforward: the left side of the above expression is bounded by

2N/2
P

[
X̂1

σ1
≥ C

]
≤ Ke−β1C,

where the second inequality follows from the asymptotics (5). It thus suffices to choose C

large enough in the positive.

We now claim that to ε > 0 there exists R > 0 such that

P

[
∃σ ∈ �N such that X̂δ

σ ∈ M, but X̂(1)
σ1

/∈ [−R,R]
]

≤ ε. (7)

By (6) we can find R̂ large enough in the positive such that

P

[
∃ σ1 : X̂(1)

σ1
≥ R̂

]
≤ ε/2. (8)

On the other hand,

P

[
∃σ ∈ �N : X̂δ

σ ∈ M,X̂(1)
σ1

≤ −R̃
]

≤ 2N
P

[
X̂δ

σ ∈ M, X̂σ1 ≤ −R̃
]

≤ 2N
E

[∫

M−X̂1
σ1

exp

[

− (y + a
(2)
N (δ))2

2a2N(1 + δN)

]
dy√

2πa2N(1 + δN)
; X̂1

σ1
≤ −R̃

]

. (9)

Omitting the positive terms in the expansion of the quadratic polynomial we have

exp

[

− (y + a
(2)
N (δ))2

2a2N(1 + δN)

]

≤ exp

[

− a
(2)
N (δ)

2

2a2(1 + δN)N
− a

(2)
N (δ)

2a2N(1 + δN)
y

]

(10)

which, by the asymptotics (5), is

≤ K2−N/2
√

2πa2N(1 + δN) exp[−β2y]. (11)

We thus obtain

(9) ≤ K2N/2
E

[
exp

(
β2X̂

1
σ1

)
; X̂1

σ1
≤ −R̃

]∫

M

e−β2ydy. (12)
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It is straightforward to see that E[exp(β2X̂
1
σ1

); X̂1
σ1

≤ −R̃] ≤ K2−N/2e−(β2−β1)R̃ . Combining,
we have

P

[
∃σ ∈ �N : X̂δ

σ ∈ M,X̂(1)
σ1

≤ −R̃
]

≤ K exp
(
−(β2 − β1)R̃

)
,

and since β2 −β1 > 0, it suffices to choose R̃ large enough in the positive to make the above
smaller than ε/2: this then yields (7) with R := max(R̂, R̃).

Now, X̂σ ∈ M and X̂(1)
σ1

∈ [−R,R] implies that X̂(2)
σ2

+ Xδ
σ1,σ2

∈ M − [−R,R]. The claim

of the Lemma thus follows with M̃ chosen large enough to contain both [−R,R] and
M − [−R,R]. �

The following Lemma provides the crucial piece of information pertaining the ultra-
metricity of the perturbed system. We emphasize that the statement is wrong if δ = 0, that is
when the Hamiltonian is simply Xσ = X1

σ1
+ X2

σ2
: in that case, coincidence of two configu-

rations on the second spin does not imply also equality on the first.

Lemma 4.2 Let M be a compact set and ε > 0. Then

P

[
∃σ, τ ∈ �N : σ1 
= τ1, σ2 = τ2 such that X̂δ

σ , X̂δ
τ ∈ M

]
≤ ε,

for large enough N .

Proof By Lemma 4.1 we can find compact M̃ such that

P

[
∃σ ∈ �N, such that X̂σ ∈ M, but X̂1

σ1
/∈ M̃ or X̂(2)

σ2
+ Xδ

σ1,σ2
/∈ M̃

]
≤ ε

2
.

Thus,

P

[
∃σ, τ ∈ �N,σ1 
= τ1, σ2 = τ2 : X̂δ

σ , X̂δ
τ ∈ M

]

≤ ε

2
+ P

[
⋃

σ,τ∈�N

σ1 
=τ1, σ2=τ2

{
X̂1

σ1
, X̂1

τ1
∈ M̃ and X̂2

σ2
+ Xδ

σ1,σ2
, X̂2

σ2
+ Xδ

τ1,σ2
∈ M̃

}
]

≤ ε

2
+ 23N/2

P

[
X̂1

σ1
∈ M̃

]2
P

[
X̂2

σ2
+ Xδ

σ1,σ2
∈ M̃, X̂2

σ2
+ Xδ

τ1,σ2
∈ M̃

]
(13)

since for σ1 
= τ1 the random variables X̂1
σ1

, X̂δ
σ1,σ2

and X̂1
τ1

, X̂δ
τ1,τ2

are independent.
Now it is easily checked that

P

[
X̂1

σ1
∈ M̃

]2 ≤ K2−N .

To prove the assertion we thus need to check that the second probability is of order
2−N/2o(1). We set

�a
(2)
N := a

(2)
N (δ) − a

(2)
N (0)

where we omit the dependence in δ for simplicity. And by expanding,

�a
(2)
N = −NδN

(√
a2 log 2

2
+ o(1)

)

.
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We will need the asymptotics

�a
(2)
N

a2NδN

= −β2

2
+ o(1),

�a
(2)
N

2

2a2NδN

= NδN

(
log 2

8
+ o(1)

)

.

Therefore, for any x ∈ R

P

[
X̂2

σ2
+ Xδ

σ1,σ2
∈ M̃ − x

]
=

∫

M̃−x

exp

[

− (y − �a
(2)
N )2

2πa2NδN

]
dy√

2a2NδN

≤ K
e−NδN

log 2
8√

NδN

∫

M̃−x

exp
[− (β2/2 + o(1)) y

]
dy

= K
e−NδN

log 2
8√

NδN

exp
[
(β2/2 + o(1)) x

]

where the last equality comes from a change of variable.
The second probability in (13) is for σ1 
= τ1

P

[
X̂2

σ2
+ Xδ

σ1,σ2
∈ M̃, X̂2

σ2
+ Xδ

τ1,σ2
∈ M̃

]

=
∫

R

P

[
Xδ

σ1,σ2
+ �a

(2)
N ∈ M̃ − x

]2
exp

[

− (x + a
(2)
N (0))2

2a2N

]
dx√

2πa2N
. (14)

The estimate (4) together with the asymptotics for a
(2)
N (0) yields the upper bound

K
e−NδN

log 2
4

NδN

∫

R

exp

[

(β2 + o(1))x − (x + a
(2)
N (0))2

2a2N

]
dx√

2πa2N

≤ 2−N/2K
e−NδN

log 2
4

δN

√
N

∫

R

exp [o(1)x]
e−x2/2a2Ndx√

2πa2N

= 2−N/2K exp

[

−NδN

2

(
log 2

2
+ log(Nδ2

N)

NδN

+ o(1)

)]

,

where the last equality follows by integration. It remains to prove that the exponential term
tends to 0. But this is so if NδN is at least of order α logN for α > 2

log 2 since

log(Nδ2
N)

NδN

= − logN

NδN

+ 2 log(NδN)

NδN

= − logN

NδN

+ o(1). �

Remark 4.3 We stress that the above result essentially stands due to the fact that the per-
turbation introduces a square in the probability (14). It is quite remarkable that, even for
such small perturbations, this alone is enough to make the probability of the event negli-
gible. On the other hand, as long as the extremal process is concerned, we believe that our
Assumption 3.2 on the size of the perturbation is fairly optimal, in the sense that smaller per-
turbations (o(logN), for N → ∞) will presumably force the probability of such an event to
stay macroscopic.
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Sketch of the Proof of Theorem 3.4 The content of Lemma 4.2 is that one cannot find two
configurations σ, τ with shifted energy levels falling into a prescribed subset for which the
overlap q(σ, τ ) = a2: if coincidence on the second spin, then also automatically on the first,
whence the two configurations must coincide. But this entails that the configurations falling
into prescribed subsets have the same kind of dependencies (= hierarchical) as if they were
coming from a two-levels GREM, and it is therefore not surprising that the mPP of the δ-
perturbed Hamiltonian converges weakly to the one constructed outgoing from a GREM: it
is explained in [7] how this simple observation, together with the asymptotics used above,
e.g.

P

[
X̂1 ∈ M1, X̂

δ
1,1 ∈ M2

]
= 2−N(1 + o(1))

∫

M1

e−β1ydy

∫

M2

e−β2ydy,

which holds for any compacts M1,M2 ⊂ R, allows to prove that the mPP X δ
N converges

weakly to X . We will not reproduce the proof here: it is a natural modification of what is
known as the Chen-Stein method [5] to prove Poisson Approximation. �

Sketch of the Proof of Corollary 3.5 This is rather straightforward. One first proves con-
vergence of the “image” of the process XN under the mapping s �→ exp(βs). This is very
standard: the upshot is that

YN
def=

∑
δexpβX̂δ

σ , expβX̂δ
τ , q(σ,τ )

converges weakly towards Y .
Having proved this, it suffices to prove that the normalization

expβX̂δ
σ �→ exp X̂δ

σ
∑

τ expβX̂τ

commutes with the limit N → ∞ to obtain that

ZN
def=

∑
δ

expβX̂δ
σ ,expβX̂δ

τ , q(σ,τ )
, expβX̂δ

σ

def= expβX̂δ
σ

∑
τ expβX̂δ

τ

(this is nothing but Gβ,δ,N (σ )) converges to Z . Again, this is very standard, and we refer the
reader to [7, pp. 34–35] for the proof that the two operations commute.

The Corollary 3.5 then follows by the remarkable properties of the Derrida-Ruelle cas-
cades and the coalescent. We refer the reader to [9, Sect. 9.2, pp. 93–94] for the heuristics,
which in particular clarifies how the special form of the intensity of the Point Processes
t �→ exp(−βit), i = 1,2, plays a crucial rôle. �

Acknowledgements The idea of small perturbations of non-irreducible models was mentioned by Erwin
Bolthausen (apparently after a discussion with Silvio Franz) to the second named author long ago. We thank
Bolthausen and Franz for sharing their insights.

Appendix: EGGI for General Perturbed Systems

In this section, we outline the method of perturbation by expansion in p-powers. This is
done in such a way to leave the free energy unchanged and retrieve the extended Ghirlanda-
Guerra identities for almost all values of the parameters. We follow closely the treatment
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of the p-spin model in [20]. The interest of such a method is that, coupled to Panchenko’s
theorem, it provides a way to prove the Parisi picture for the perturbed Gibbs measure of a
fairly wide class of Hamiltonians (see Proposition 5.1 below).

Let X = (Xσ )σ∈�N
be a spin glass Hamiltonian with covariance N{qσσ ′ } as in the general

setting of Sect. 2. Consider (βp)p≥1 with βp > 0 and
∑

p≥1 β2
p < ∞. We write �β for a vector

(β1, β2, β3, . . .). It is convenient to assume that for all p: βp ≤ β1. We say that a property
holds for almost all in �β for the measure given by the product of the Lebesgue measures on
[0, β1]. The perturbed Hamiltonian is

β1Xσ + √
δN

∑

p>1

βpXp
σ (15)

where (Xp
σ ) are centered Gaussians with covariance N{qp

σσ ′ } independent for distinct p

and X. We shall need that δN → 0 and Nδ
1/8
N → ∞. Therefore NδN must grow faster than

N7/8, a condition much stronger than logN . The application of Panchenko’s theorem proven
here is:

Proposition 5.1 (Full Parisi picture) Suppose that the number of values taken by the over-
laps {qσσ ′ } is uniformly bounded in N . Then for almost all �β , the limit points of (G �β,N )N are
Derrida-Ruelle cascades.

By Panchenko’s theorem, the proof reduces to show EGGI.

Lemma 5.2 For almost all �β , the limit points of (G �β,N )N satisfy EGGI.

The first ingredient is the self-averaging of the internal energy in β-average coming from
convexity and concentration of measure.

Theorem 5.3 (Theorem 2.12.1 in [20]) In the setting of (15), one has for every p > 1
∫

[0,β1]N
EG �β,N

(∣
∣
∣Xp

σ /N − EG �β,N

(
Xp

σ /N
)∣∣
∣
)
d �β ≤ K

N1/4δ2
N

for some constant K independent of N and p. For p = 1, the above holds without δN .

We denote by G �β a generic limit point of (G �β,N ). We write fs(q) for any bounded mea-
surable function of the overlaps of s copies. The above theorem is applied directly to prove
the factorization essential to the proof of the EGGI. Namely, if N2δ1/4 → 0 as N → ∞, then
for every p and almost all �β

lim
N→∞

EG⊗s
�β,N

(
Xp

σ1
fs(q)

δNN

)

= β2
p EG⊗2

�β
(

1 − qp
σ1σ2

)
EG⊗s

�β
(
fs(q)

)
.

On the other hand, standard Gaussian integration by parts yields for every N

EG⊗s
�β,N

(
Xp

σ1
fs(q)

δNN

)

= β2
p

(
s∑

l=1

EG⊗s
�β,N

(
qp

σ1σl
fs(q)

)
− s EG⊗s+1

�β,N

(
qp

σ1σs+1
fs(q)

)
)

.

By combining the two last equations, one gets an approximation of any bounded measur-
able function g by approximating with polynomials, thereby retrieving EGGI and proving
the proposition.
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